
# CDF Central Preshower Detector Upgrade for Run IIb

Joey Huston
Michigan State University

### Preshower basics

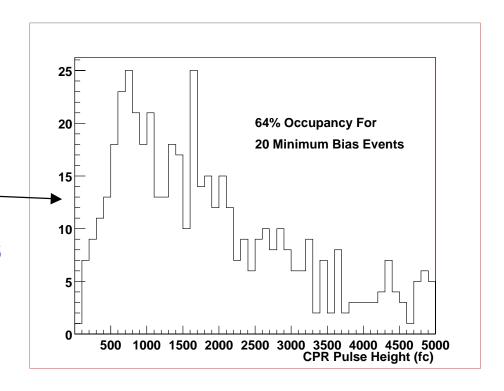
- 1 Central preradiator (CPR) lies behind 1.1 X<sub>o</sub> of dead material (solenoid coil) and in front of EM calorimeter
- 1 Next to CPR are more gas chambers, Central Crack Energy Detectors (CCR)
- 1 CDF preshower used in >100 papers, about 1/2 of all Run I publications, including
  - Higgs searches
  - Sin(2β)
  - ◆ High p<sub>T</sub> photons
  - Top quark mass



### A New CPR for Run IIb

new

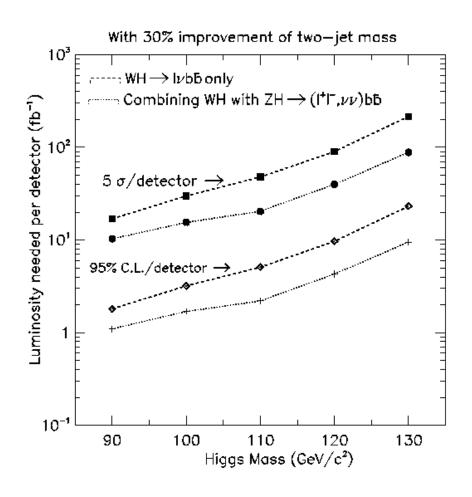
# 1 Current/potential uses for a CPR


- improving electron identification (factor of 3 in Run 1)
- separating single photons from meson backgrounds (crucial for high E<sub>T</sub> photons in Run I)
- improving electron and photon resolutions by correcting for dead material
- estimating the energy deposited in the EM calorimeter by charged hadrons

# 1 Reasons for replacing the one we have

- CPR is a slow wire chamber that integrates over several crossings and has relatively poor segmentation; this will lead to very high occupancies in Run Ilb
- current CPR segmentations makes it difficult to use in more sophisticated analyses, such as improving jet resolutions
- with 15 fb<sup>-1</sup>, the CPR will have integrated 0.15C/cm
- thin gas layers in CPR and CCR have worse energy resolution than scintillator

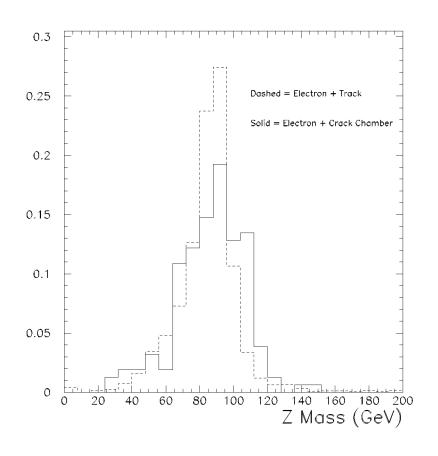
## Occupancy Issues


- 1 Current CPR is a slow wire chamber
- 1 Based on early results from Run II, appears that integrating over 4 crossings may be necessary
- 1 If peak Run IIb luminosities reach 6X10<sup>32</sup>, with 108 bunches and 132 ns spacing, then 5 MB events/crossing and current CPR will see 20 minimum bias events
  - occupancy of 64%
- 1 If peak Run IIb luminosities reach 2X10<sup>32</sup>, but with 36 bunches and 396 ns, then 6 MB events/crossing and current CPR will see 12 MB events
- Proposed detector will reduce occupancy by overlapping MB events by more than X10
  - improving detector speed
  - improving detector segmentation



## More Physics Motivation: CPR

#### 1 Higgs physics


- High p<sub>T</sub> electron ID
- Soft electron b-tagging
  - useful for the loose b-tag of a double tag
  - useful for neutrino corrections
- Improving jet energy resolution (for H->bbar)
  - one of main challenges of energy flow algorithms is estimating fraction of track energy deposited in EM calorimeter
- Photon energy resolution corrections



## More Physics motivation: CCR

- 1 Also useful for new physics searches involving photons and missing E<sub>T</sub>
- 1 Can tag photons hitting the crack which cause missing E<sub>T</sub>
- 1 Can be added for an additional 6% of the total cost, and installed at same time as CPR

Example from Run I of crack tagging, in this case the second leg of a Z decay



CDF Run IIb Review J. Huston

## Design for a new CPR

- 1 Limited budget for Run IIb upgrades necessitates a limited budget for the CPR upgrade
  - existing electronic channels for current CPR and CCR channels will be re-used
    - determines channel count
    - actually improve usage of existing electronics
  - same 16-channel phototube (Hamamatsu R5900) as CDF endplug preshower and shower max will be used
    - ▲ 16 channels with pixel size of 4.5X4.5mm<sup>2</sup>
    - ▲ 4 MAPMTs/wedge for a total of 192
    - make use of experience and test stations
      current favorite

- Basic design of new CPR involves scintillator strips, read out by WLS fibers embedded in a groove in one surface of the scintillator
- Several options for scintillator (major decision path)
  - MINOS design; they are extruding 700,000 m of these strips
  - scintillator purchased form Bicron
  - scintillator produced by Dubna
  - require >~ 5 photoelectrons/mip
    - ▲ MINOS gets 10 pe/mip
    - ▲ Dubna scintillator of similar quiality but 2 cm thick instead of 1 cm, so expect more light

## **Scintillator Options**

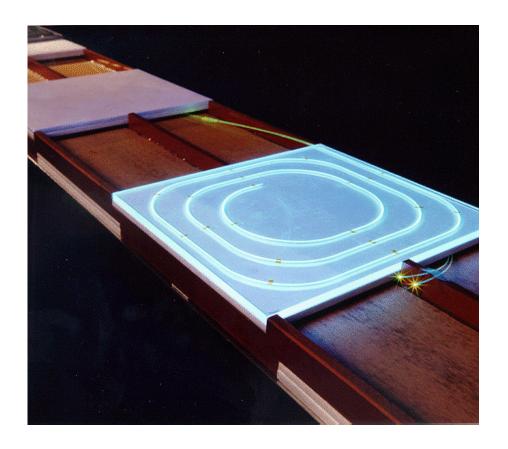
#### Dubna scintillator


- used for some of CDF muon counters
- enough for CPR2 counters sitting in warehouse in Dubna currently (2 cm thickness)
- sheets would be machined and grooved at Fermilab using facilities in Lab 8

#### Bicron scintillator

- commercial product with proven light yield
- again, would buy sheets and have them grooved and machined at Fermilab
- in any case, will use for crack scintillator

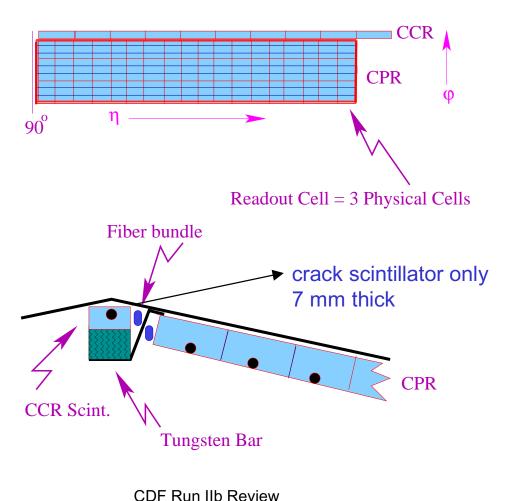
# 1 MINOS is extruding 700,000 m of scintillator strips


- 4.1 cm wide, 1 cm thick coextruded with TiO2 coating
- Cost is basically free, but width is not well-matched to preferred segmentation...and requires much greater length of WLS fiber, so total cost not much different



CDF Run IIb Review J. Huston

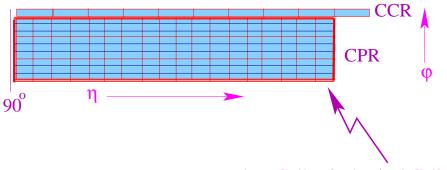
### Bicron/Dubna


1 With either Bicron or Dubna, there is more flexibility as to what type of groove to cut in the scintillator

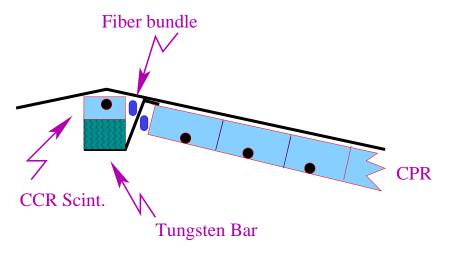


CDF Run IIb Review J. Huston

## CPR2 Design


- New CPR will be placed in same space currently occupied by old CPR and CCR
- 1 Basic design involves scintillator strips, segmented in η and φ, read out by WLS fibers
  - scintillator for each wedge assembled into a 'pizza pan' similar to endplug upgrade
  - WLS fibers routed through grooves in plastic layer underneath
  - glued into optical connectors at high |η| end
  - optical cables will be routed from connectors through the gap between central and endwall calorimeters to back of each central wedge
  - light signals will be coupled to pixels of MAPMT's




J. Huston

## CPR2 Design

- 1 Reusing existing electronics implies 64 channels available
  - modification of SMQIE/SQUID electronics not required
- One possible design would retain 10 CCR channels and allocate 6 channels to each of 9 fiducial calorimeter towers
  - 2X3 (ΔηΧΔφ)
  - with this configuration, towerbased information could be used in optimized jet resolution algorithms
  - could overlap panels to provide 11 φ bins per wedge, at the expense of a larger occupancy
    - will be studied early in Run IIa



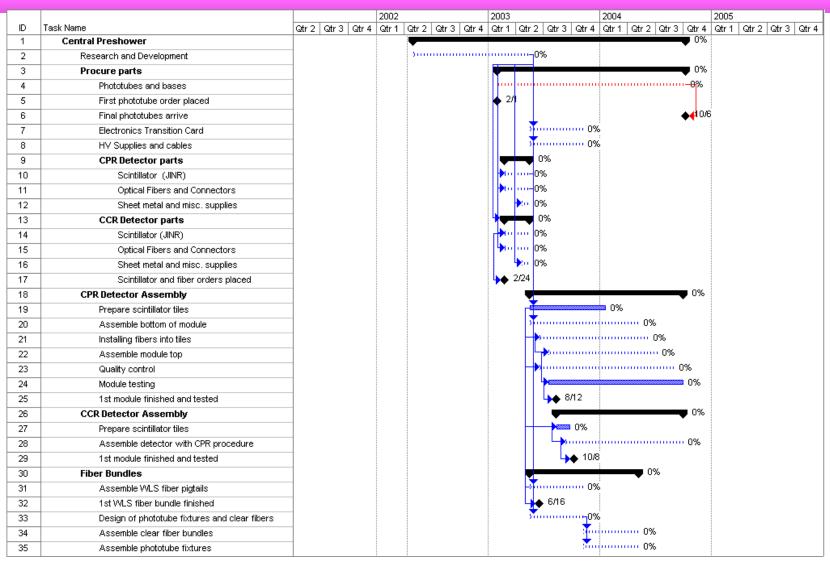
Readout Cell = 3 Physical Cells



CDF Run IIb Review J. Huston

## **CPR2** organization

#### 1 2 co-leaders


- Joey Huston Michigan State
- Steve Kuhlmann Argonne
- 1 Participating groups
  - Argonne National Laboratory
  - Michigan State University
  - Rockefeller University
  - INFN Pisa
  - Tsukuba University

Much of the cost of this upgrade will come from foreign sources

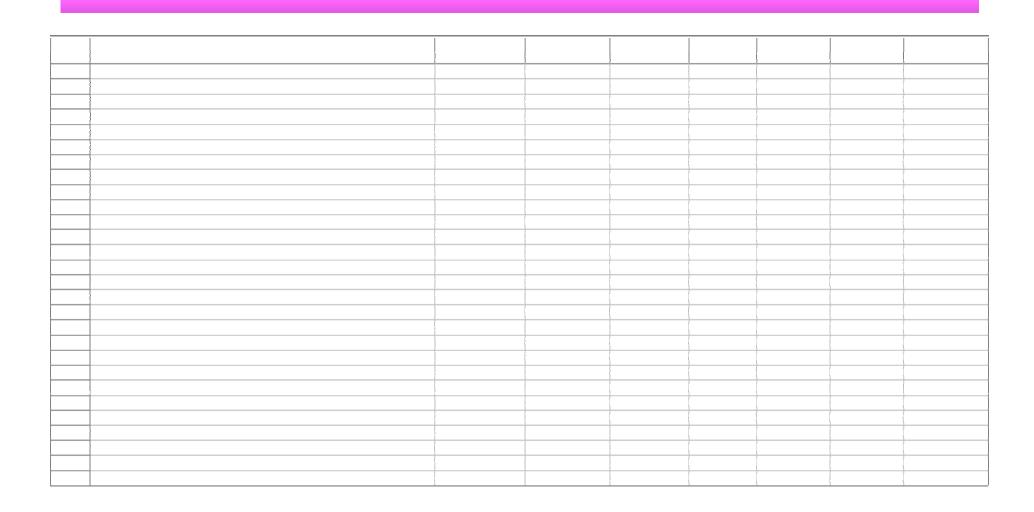
#### 1 Basic division of tasks

- Argonne
  - ▲ Final assembly/testing
- Michigan State
  - ▲ WLS pigtails
  - Optical cables
- Rockefeller
  - ▲ Software/simulation
- INFN Pisa
  - ▲ HV supplies and cables
- Tsukuba
  - ▲ PMT testing
- Fermilab
  - ▲ Cutting/grooving of scintillator

### Schedule



J. Huston


# **Cost Summary**

| Cost              | \$740K |
|-------------------|--------|
| Contingency       | \$205K |
| Cost+Cont.        | \$945K |
| U.S. (with Cont.) | \$425K |
| Japan             | \$301K |
| Italy             | \$168K |
| Fnal Labor        | \$51K  |

Our piece of the \$9.1M...

| Contingency    | \$205K |
|----------------|--------|
| Non-Fnal Labor | \$75K  |
| R+D            | \$56K  |
| Parts          | \$24K  |

## Cost



## CPR2 prototype

1 Half of a wedge prototype (built at ANL); can install in Run IIa (with 2 week shutdown)





## Summary

- 1 For a relatively modest cost, electron/photon ID, jet energy resolution can be maintained/improved through Run IIb
- 1 Technology is well understood within CDF
- 1 Group within CDF has been formed to work on upgrade including 2 foreign institutions